
Chapter 11 

Markov Chains 

This section briefly presents some fundamental results concerning the theory of 
Markov chains with a finite number of states. These results will be used in the 
following chapter. We will use the usual terminology introduced by Chung (1960) 
and Parzen (1962). 

11.1. Definitions 

Let us consider an economic or physical system S  with m  possible states, 
represented by the set I : 

 1, 2, ,I m . (11.1) 

Let the system S  evolve randomly in discrete time 0, 1, 2, , , ,t n  
and let nJ  be the r.v. representing the state of the system S  at time n . 
 
Definition 11.1 The random sequence ,nJ n  is a Markov chain if and 
only if for all 0 1, , , :nj j j I  

0 0 1 1 1 1 1 1| , , , |n n n n n n n nP J j J j J j J j P J j J j (11.2) 

(provided this probability has meaning). 
 
Definition 11.2 A Markov chain , 0nJ n  is homogenous if and only if 
probabilities (1.2) do not depend on n  and are non-homogenous in the other cases. 
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For the moment, we will only consider the homogenous case for which we write: 

 1| ,n n ijP J j J i p  (11.3) 

and we introduce matrix P defined as: 

 ijpP . (11.4) 

The elements of matrix P have the following properties: 

(i) 0,ijp for all , ,i j I  (11.5) 

(ii) 1,ij
j I

p  for all .i I  (11.6) 

A matrix P satisfying these two conditions is called a Markov matrix or a 
transition matrix. 

 
With every transition matrix, we can associate a transition graph where vertices 

represent states. There exists an arc between vertices i and j if and only if 0.ijp  
 
To fully define the evolution of a Markov chain, it is also necessary to fix an 

initial distribution for state 0J , i.e. a vector  

 1, , ,mp pp  (11.7) 

such that: 

 0, ,ip i I  (11.8) 

 1.i
i I

p  (11.9) 

For all , ii p  represents the initial probability of starting from i : 

 0 .ip P J i  (11.10) 

For the rest of this chapter we will consider homogenous Markov chains as being 
characterized by the couple ,p P . 
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If nJ i  a.s., that is, if the system starts with probability equal to 1 from state 
i , then the components of vector p will be: 

 j ijp . (11.11) 

We now introduce the transition probabilities of order ( )n
ijp , defined as: 

 ( ) |n
ij np P J j J i . (11.12) 

From the Markov property (11.2), it is clear that conditioning with respect to 

1J , and we obtain 

 (2) .ij ik kj
k

p p p  (11.13) 

Using the following matrix notation: 

 (2) (2)
ijpP , (11.14) 

we find that relation (11.13) is equivalent to 

 (2) 2P P . (11.15) 

Using induction, it is easy to prove that if 

 ( ) ( )n n
ijpP , (11.16) 

then we obtain for all 1n : 

 ( )n nP P . (11.17) 

Note that (11.17) implies that the transition probability matrix in n  steps is equal 
to the nth power of matrix P. 
 

For the marginal distributions related to ,nJ  we define for i I  and 0n : 

 ( ) .i np n P J i  (11.18) 
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These probabilities may be calculated as follows: 

 ( )( ) ,n
i j ji

j

p n p p i I . (11.19) 

If we write: 

 (0)
ji jip  or (0)P I , (11.20) 

then relation (11.19) is true for all 0n . 
 
If: 

 1( ) ( ), , ( ) ,mn p n p np  (11.21) 

then relation (11.19) can be expressed, using matrix notation, as: 

 ( ) .nnp pP  (11.22) 

Definition 11.3 A Markov matrix P is regular if there exists a positive integer k , 
such that all the elements of matrix ( )kP  are strictly positive. 
 

From relation (11.17), P is regular if and only if there exists an integer 0k  
such that all the elements of the kth power of P are strictly positive. 
 
Example 11.1 

(i) If: 

 
0.5 0.5

1 0
P  (11.23) 

we have: 

 2
0.75 0.25

0.5 0.5
P  (11.24) 

so that P is regular. 
 

The transition graph associated with P is given in Figure 11.1.  
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Figure 11.1. Transition graph of matrix (11.23) 

(ii) If: 

 
1 0

0.75 0.25
P , (11.25) 

P is not regular, because for any integer k, 

 ( )
12 0.kp  (11.26) 

 

Figure 11.2. Transition graph for matrix (11.25) 

The transition graph in this case is depicted in Figure 11.2. 
 

The same is true for the matrix: 

 
0 1

1 0
P . (11.27) 

(iii) Any matrix P whose elements are all strictly positive is regular. 
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For example: 

 

1 2 0.7 0.2 0.1
3 3 0.6 0.2 0.2
1 3

0.4 0.1 0.5
4 4

. (11.28) 

11.2. State classification 

Let i I , and let ( )d i  be the greatest common divisor of the set of integers n , 
such that  

 ( ) 0.n
iip  (11.29) 

Definition 11.4 If ( ) 1d i , the state i  is said to be periodic with period ( )d i . If 
( ) 1d i , then state i  is aperiodic. 

 
Clearly, if 0iip , then i  is aperiodic. However, the converse is not necessarily 

true. 
 
Remark 11.1 If P is regular, then all the states are aperiodic. 
 
Definition 11.5 A Markov chain whose states are all aperiodic is called an 
aperiodic Markov chain. 
 

From now on, we will have only Markov chains of this type. 
 
Definition 11.6 A state i  is said to lead to state j  (written i j ) if and only if 
there exists a positive integer n  such that 

 0.n
ijp  (11.30) 

i jC  means that i does not lead to j. 
 
Definition 11.7 States i  and j  are said to communicate if and only if i j  and 
j i , or if j i . We write i j . 

 
Definition 11.8 A state i  is said to be essential if and only if it communicates with 
every state it leads to; otherwise it is called inessential. 
 

Relation  defines an equivalence relation over the state space I  resulting in 
a partition of I . The equivalence class containing state i  is represented by ( )C i . 
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Definition 11.9 A Markov chain is said to be irreducible if and only if there exists 
only one equivalence class. 
 

Clearly, if P is regular, the Markov chain is both irreducible and aperiodic. Such 
a Markov chain is said to be ergodic. 

It is easy to show that if the state i  is essential (inessential), then all the elements 
of class ( )C i  are essential (inessential) (see Chung (1960)). 

 
We can thus speak of essential and inessential classes. 

 
Definition 11.10 A subset E  of the state space I  is said to be closed if and only if: 

 1ij
j E

p , for all i E . (11.31) 

It can be shown that every essential class is minimally closed; see Chung (1960). 
 
Definition 11.11 For given states i  and j , with 0 ,J i  we can define the r.v. ij  
called the first passage time to state j as follows: 

 
if , 0 , ,

if ,  for all 0.
n

ij

n J j n J j

J j
 (11.32) 

ij  is said to be the hitting time of the singleton j , starting from state i  at 
time 0. 

 
Assuming: 

 ( )
0 0| ,n

ij ijf P n J i n  (11.33) 

and 

 0| ,ij ijf P J i  (11.34) 

we can see that for 0n : 

 ( )
0, , 0 | ,n

ij nf P J j J j n J i  (11.35) 
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1

, ,

1

' 0

,
k k

n i j

n

S k

p  (11.36) 

where the summation set , ,'n i jS  is defined as: 

 
, ,

0 1 0

'

, , , : , , , , 1, , 1 .
n i j

n n k k

S

i j I j k n
 (11.37) 

We also have: 

 ( )

1

,n
ij ij

n

f f  (11.38) 

 01 | .ij ijf P J i  (11.39) 

Elements ( )n
ijf  can readily be calculated by induction, using the following 

relations: 

 (1) ,ij ijp f  (11.40) 

 
1

( ) ( ) ( ) ( )

1

, 2
n

n n n
ij ij jj ijp f p f n . (11.41) 

Let: 

 0| ,ij ijm E J i  (11.42) 

with the possibility of an infinite mean. The value of ijm  is given by: 

 ( )

1

1 .n
ij ij ij

n

m nf f (*) (11.43) 

If i j , then ijm  is called the first passage time mean or the mean recurrence 
time of state i . 

 
For every j, we define the sequence of successive return times to state 

( ) ,j
nj r n a  as follows: 

                              
(*) Using the following conventions: , , , ( 0)a a a a , and in this 
particular case, 0 0 . 
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 ( )
0 0jr , (11.44) 

 ( ) ( )( )
0, 1 1sup , , , 0.j jj

n n n
k

r k k r J j r k n  (11.45) 

Using the Markov property and supposing 0 ,J j  the sequence of return times 
to state j  is a renewal sequence with the r.v. 

 ( )( )
1 , 1jj

n nr r n  (11.46) 

is a sequence of independent r.v. all distributed according to jj . 
 

If 0 , ,J i i j  then the first time of hitting  j is 

 ( )
1 ,j

ijr  (11.47) 

and 

 ( )( )
1 ~ , 1.jj

n n jjr r n  (11.48) 

Definition 11.12 A state i is 

 transient 1,iii f  (11.49) 

 recurrent 1.iii f  (11.50) 

A recurrent state i  is said to be zero (positive) if ii iim m . It can be 
shown that if iim , then we can only have positive recurrent states. 

 
This classification leads to the decomposition theorem (see Chung (1960)). 

 
Proposition 11.1 (Decomposition theorem) The state space I of any Markov chain 
can be decomposed into ( 1)r r  subsets 1, , rC C  forming a partition, such that 
each subset iC  is one and only one of the following types: 

(i) an essential recurrent positive closed set; 

(ii) an inessential transient non-closed set. 
 
Remark 11.2 

(1) If an inessential class reduces to a singleton i , there are two possibilities: 

a) there exists a positive integer N such that: 

 0 1N
iip . (11.51) 
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b) the N  in a) does not exist. In this case, state i  is said to be a non-return state. 

(2) If singleton i  forms an essential class, then  

 1iip  (11.52) 

and state i  is said to be an absorbing state. 

(3) If m , there may be two other types of classes in the decomposition 
theorems: 

a) essential transient closed; 

b) essential recurrent non-closed classes. 

Other works on Markov chains give the following necessary and sufficient 
conditions for recurrence and transience. 
 
Proposition 11.2 

(i) State i is transient if and only if 

 ( )

1

.n
ii

n

p  (11.53) 

In this case, for all :k I  

 ( )

1

,n
ki

n

p  (11.54) 

and in particular: 

 ( )lim 0, .n
kin

p k I  (11.55) 

(ii) State i is recurrent if and only if 

 ( )

1

.n
ii

n

p  (11.56) 

In this case:  

 ( )

1

,n
ki

n

k i p  (11.57) 
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and 

 ( )

1

0.n
ki

n

k i pC  (11.58) 

11.3. Occupation times 

For any state ,j  and for 0n , we define the r.v. ( )jN n  as the number of 
times state j  is occupied in the first n  transitions: 

 ( ) # 1, , : .j kN n k n J j  (11.59) 

By definition, the r.v. ( )jN n  is called the occupation time of state j in the first n 
transitions. 

 
The r.v. 

 ( ) lim ( )j jn
N N n   (11.60) 

is called the total occupation time of state j. 
 

For any state j  and 0n  let us define: 

 
1 if ,

( )
0 if .

n
j

n

J j
Z n

J j
 (11.61) 

We may write: 

 
1

( ) ( ).
n

j jN n Z  (11.62) 

We have from relation (11.34): 

 0P ( ) 0 | .j ijN J i f  (11.63) 

Let ijg  be the conditional probability of an infinite number of visits to state j , 
starting with 0J i ; that is: 
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 0( ) | .ij jg P N J i  (11.64) 

It can be shown that: 

 ( )lim n
ii iin

g f , (11.65) 

 ij ij jjg f g , (11.66) 

 1 1ii iig f i  is recurrent, (11.67) 

 0 1ii iig f i  is transient. (11.68) 

Results (11.67) and (11.68) can be interpreted as showing that system S  will 
visit a recurrent state an infinite number of times, and that it will visit a transient 
state a finite number of times. 

11.4. Absorption probabilities 

Proposition 11.3 

(i) If i is recurrent and if ( ),j C i  then 1.ijf  

(ii) If i is recurrent and if ( ),j C i  then 0ijf . 
 
Proposition 11.4 Let T be the set of all transient states of I, and let C be a recurrent 
class. 
 

For all ,j k C ,  

 .ij ikf f  (11.69) 

Labeling this common value as iCf , the probabilities , ,i Cf i T  satisfy the 
linear system: 

 , , , .i C ik k C ik
k T k C

f p f p i T  (11.70) 

Remark 11.3 Parzen (1962) proved that under the assumption of Proposition 11.4, 
the linear system (11.70) has a unique solution. This shows, in particular, that if 
there is only one irreducible class C , then for all i T : 

 , 1i Cf . (11.71) 
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Definition 11.13 The probability ,i Cf  introduced in Proposition 11.4 is called 
absorption probability in class C, starting from state i. 
 

If class C  is recurrent: 

 ,

if

if  is recurrent,

1  ,

0   .
i C

i

i C
f

i C
 (11.72) 

11.5. Asymptotic behavior 

Consider an irreducible aperiodic Markov chain which is positive recurrent. 
 
Suppose that the following limit exists: 

 lim ( ) ,j jn
p n j I  (11.73) 

starting with 0J i . 
 

The relation 

 ( 1) ( )j k kj
k I

p n p n p  (11.74) 

becomes: 

 ( )( 1) ,nn
ij kjik

k I

p p p  (11.75) 

because 

 ( )( ) .n
j ijp n p  (11.76) 

Since the state space I  is finite, we obtain from (11.73) and (11.75): 

 j k kj
k I

p , (11.77) 

and from (11.76): 

 1i
i I

. (11.78) 
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The result: 

 ( )lim n
ij jn

p  (11.79) 

is called an ergodic result, since the value of the limit in (11.79) is independent of 
the initial state i . 
 

From result (11.79) and (11.19), we see that for any initial distribution p: 

 ( )lim ( ) lim ,n
i j ji

n n
j

p n p p  (11.80) 

 j i
j

p , (11.81) 

so that: 

 lim ( )i in
p n . (11.82) 

This shows that the asymptotic behavior of a Markov chain is given by the 
existence (or non-existence) of the limit of matrix nP . 

 
A standard result concerning the asymptotic behavior of nP  is given in the next 

proposition. The proof can be found in Chung (1960), Parzen (1962) or Feller (1957). 
 
Proposition 11.5 For any aperiodic Markov chain of transition matrix P and having 
a finite number of states, we have: 

a) if state j is recurrent (necessarily positive), then 

(i)    ( ) 1
( ) lim ,n

ijn
jj

i C j p
m

  (11.83) 

(ii)   i is recurrent and ( )( ) lim 0,n
ijn

C j p  (11.84) 

(iii)  i is transient and 
, ( )( )lim .i C jn

ijn
jj

f
p

m
 (11.85) 

b) If j is transient, then for all :i I  

 ( )lim 0.n
ijn

p  (11.86) 
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Remark 11.4 Result (ii) of part a) is trivial since in this case: 

( ) 0n
ijp  for all positive n. 

From Proposition 11.5, the following corollaries can be deduced. 
 
Corollary 11.1 (Irreducible case) If the Markov chain of transition matrix P is 
irreducible, then for all ,i j I : 

 ( )lim ,n
ij jn

p  (11.87) 

with 

 
1

j
jjm

. (11.88) 

It follows that for all j : 

 0j . (11.89) 

If we use Remark 11.4 in the particular case where we have only one recurrent 
class and where the states are transient (the uni-reducible case), then we have the 
following corollary. 

 
Corollary 11.2 (Uni-reducible case) If the Markov chain of transition matrix P has 
one essential class C (necessarily recurrent positive) and T as transient set, then we 
have: 

(i) for all , :i j C  

( )lim ,n
ij jn

p  (11.90) 

with ,j j C  being the unique solution of the system: 

 ,j i ij
i C

p  (11.91) 

 1j
j C

; (11.92) 

(ii) for all j T : 

 ( )lim 0 for all n
ijn

p i I ; (11.93) 

(iii) for all :j C  
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 ( )lim  for all .n
ij jn

p i T  (11.94) 

Remark 11.5 Relations (11.91) and (11.92) are true because the set C  of recurrent 
states can be seen as a Markov sub-chain of the initial chain. 
 

If the  transient states belong to the set 1, , , using a permutation of the 
set I , if necessary, then matrix P takes the following form: 

 
11 12

22

1 1

1

1

m

m

P P

P

O P

. (11.95) 

This proves that the sub-matrix 22P  is itself a Markov transition matrix. 

Let us now consider a Markov chain of matrix P. The general case is given by a 
partition of I: 

 1 ,rI T C C   (11.96) 

where T  is the set of transient states and 1, , rC C  the r  positive recurrent 
classes. 
 

By reorganizing the order of the elements of I , we can always suppose that 

 1, ,T , (11.97) 

 1 11, ,C , (11.98) 

 2 1 1 21, ,C , (11.99) 

  

 
1

1

1, , ,
r

r j
j

C m  (11.100) 

where j  is the number of elements in , 1, ,jC j r  and  
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1

.
r

j
j

m  (11.101) 

This results from the following block partition of matrix P: 

 

1 2

1 1

2 2

r

r r

P P P P

0 P 0 0

0 0 P 0P

0 0 0 P

 (11.102) 

where, for 1, ,j r : 

– P  is the transition sub-matrix for T ; 

– 
j

P  is the transition sub-matrix from T  to jC ; 

– 
j j

P  is the transition sub-matrix for the class jC . 

From Proposition 11.1, we obtain the following corollary. 
 
Corollary 11.3 For a general Markov chain of matrix P, given by (11.102), we 
have: 

(i) for all i I  and all j T : ( )lim 0;n
ijn

p  (11.103) 

(ii) for all 1, , :j C r  

 ( )
'

,

if ,

lim 0 if ' ,

if ,

j

n
ijn

i C j

i C

p i C

f i T

 (11.104) 

moreover, for all  1, , r : 

 1.j
j C

 (11.105) 

This last result allows us to calculate the limit values quite simply. 
 

For , , 1, ,j j C r , it suffices to solve the linear systems for 
each fixed : 
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, ,

1.

j k kj
k C

i
i C

p j C

 (11.106) 

Indeed, since each C  is itself a space set of an irreducible Markov chain of 
matrix P , the above relations are none other than (11.77) and (11.78). 
 

For the absorption probabilities , , , 1, ,i Cf i T r , it suffices to 

solve the following linear system for each fixed . Using Proposition 11.4, we 
have: 

 , , , .i C ik i C ik
k T k C

f p f p i T  (5.35) 

An algorithm, given in De Dominicis and Manca (1984b) and very useful for the 
classification of the states of a Markov chain, is fully developed in Janssen and 
Manca (2006). 

11.6. Examples 

Markov chains appear in many practical problems in fields such as operations 
research, business, social sciences, etc. 
 

To give an idea of this potential, we will present some simple examples followed 
by a fully developed case study in the domain of social insurance. 

11.6.1. A management problem in an insurance company 

A car insurance company classifies its customers in three groups: 

– 0G : those having no accidents during the year; 

– 1G : those having one accident during the year; 

– 2G : those having more than one accident during the year. 
 

The statistics department of the company observes that the annual transition 
between the three groups can be represented by a Markov chain with state space 

0 1 2, ,G G G  and transition matrix P: 
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0.85 0.10 0.05

0 0.80 0.20

0 0 1

P . (11.108) 

We assume that the company produces 50,000 new contracts per year and wants 
to know the distribution of these contracts for the next four years. 
 

After one year, we have, on average: 

– in group 0 : 50,000 .85 42,500G ; 

– in group 1 : 50,000 .10 5,000G ; 

– in group 2 : 50,000 .05 2,500G . 
 

These results are simply the elements of the first row of P, multiplied by 50,000. 
After two years, multiplying the elements of the first row of (2)P  by 50,000, we 
obtain: 

– in group 0 : 36,125G ; 

– in group 1 : 8,250G ; 

– in group 2 : 5,625G . 
 

A similar calculation gives: 
 

 After three years After four years 

0G  30,706 26,100 

1G  10,213 11,241 

3G  9,081 12,659 

 
To find the type of the Markov chain with transition matrix (11.108), the simple 

graph of possible transitions given in Figure 11.3 shows that class 1, 2  is 
transient and class 3  is absorbing. Thus, using Corollary 11.2 we obtain the limit 
matrix 

 

0 0 1

0 0 1

0 0 1

A . (11.109) 
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The limit matrix can be interpreted as showing that regardless of the initial 
composition of the group the customers will finish by having at least two accidents. 
 

 

Figure 11.3. Transition graph of matrix (11.108) 

Remark 11.6 If we want to know the situation after one or two changes, we can use 
relation (1.19) with 1,2,3n  and with p given by: 

(0.26,0.60,0.14)p . (11.110) 

We obtain the following results: 

(1) (1) (1)
1 2 3

(2) (2) (2)
1 2 3

(3) (3) (3)
1 2 3

0.257 0.597 0.146

0.255 0.594 0.151

0.254 0.590 0.156.

p p p

p p p

p p p

 

These results show that the convergence of ( )np  to  is relatively fast. 

11.6.2. A case study in social insurance (Janssen (1966)) 

To calculate insurance or pension premiums for occupational diseases such as 
silicosis, we need to calculate the average (mean) degree of disability at pre-assigned 
time periods. Let us suppose we retain m  degrees of disability: 
 

1, , mS S , the last being 100% and including the pension paid out at death. 
 

Let us suppose, as Yntema (1962) did, that an insurance policy holder can go 
from degree iS  to degree jS  with a probability ijp . This strong assumption leads 
to the construction of a Markov chain model in which the m m  matrix: 
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 ijpP  (11.111) 

is the transition matrix related to the degree of disability. 
 

For individuals starting at time 0 with iS  as the degree of disability, the mean 
degree of disability after the nth transition is: 

 ( )

1

( ) .
m

n
i ij j

j

S n p S  (11.112) 

To study the financial equilibrium of the funds, we must calculate the limiting 

value of ( )iS n : 

 lim ( )i in
S S n , (11.113) 

or 

 ( )

1

lim .
m

n
i ij jn

j

S p S  (11.114) 

This value can be found by applying Corollary 11.3 for 1, ,i m . 

Numerical example 

Using real-life data for silicosis, Yntema (1962) began with the following 
intermediate degrees of disability: 

1

2

3

4

5

10%

30%

50%

70%

100%

S

S

S

S

S

  

Using real observations recorded in the Netherlands, he considered the following 
transition matrix P: 

 

0.90 0.10 0 0 0

0 0.95 0.05 0 0

0 0 0.90 0.05 0.05

0 0 0 0.90 0.10

0 0 0.05 0.05 0.90

P ; (11.115) 
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the transition graph associated with matrix (11.115) being given in Figure 11.4. This 
immediately shows that: 

(i) all states are aperiodic; 

(ii) the set 3 4 5, ,S S S  is an essential class (positive recurrent); 

(iii) the singletons 1  and 2  are two inessential transient classes. 
 

Thus a uni-reducible Markov chain can be associated with matrix P. We can thus 
apply Corollary 11.2. It follows from relation (11.114) that: 

 
5

3

limi j jn
j

S S , (11.116) 

where 3 4 5, ,  is the unique solution of the linear system: 

 

3 3 4 5

5 3 4 5

4 3 4 5

3 4 5

0.9 0 0.05 ,

0.05 0.9 0.05 ,

0.05 0.05 0.9 ,

1 .

 (11.117) 

The solution is: 

 3 4 5

2 3 4
, ,

9 9 9
. (11.118) 

Therefore: 

 
2 3 4

50 70 100 %
9 9 9iS  (11.119) 

or 

 79%iS  (11.120) 

which is the result obtained by Yntema. 
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Figure 11.4. Transition graph of matrix (11.115) 

The last result proves that the mean degree of disability is, at the limit, 
independent of the initial state i. 


